Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.020
Filtrar
1.
Front Immunol ; 15: 1385907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605960

RESUMO

The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Mucosa Intestinal , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Hipóxia/metabolismo
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 428-436, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597433

RESUMO

OBJECTIVE: To investigate the mechanism of metformin for regulating tumor-stromal cell cross-talk in breast cancer. METHODS: Tumor associated fibroblasts (CAFs) co-cultured with breast cancer cells were treated with metformin, and the changes in expressions of hypoxia-inducible factor-1α (HIF-1α), p-AMPK, stroma-derived factor-1 (SDF-1) and interleukin-8 (IL-8) in the CAFs were detected using ELISA, RT-qPCR or Western blotting; Transwell assay was used to evaluate the invasiveness of the tumor cells and its changes following treatment with exogenous SDF-1, IL-8 and TGF-ß1. The effects of HIF-1α shRNA or overexpression plasmid, AMPK shRNA, and treatment with OG (a proline hydroxylase inhibitor) or 2-OXO (a proline hydroxylase activator) were examined on p-AMPK, HIF-1α, SDF-1 and IL-8 expressions and invasiveness of the CAFs. RESULTS: Metformin treatment significantly increased the expression levels of p-AMPK, SDF-1 and IL-8 (P<0.05) and decreased HIF-1α expression (P<0.05) without affecting AMPK expression level (P>0.05) in the CAFs. The invasion ability of metformintreated breast cancer cells was significantly decreased (P<0.05). Exogenous SDF-1 and IL-8, HIF-1α overexpression, and OGinduced upregulation of HIF-1α all significantly attenuated the inhibitory effects of metformin on breast cancer cell invasion (P<0.05) and HIF-1α, SDF-1 and IL-8 expressions in CAFs (P<0.05). Transfection with HIF-1α shRNA or treatment with 2-OXO significantly decreased the invasiveness of breast cancer cells (P<0.05). P-AMPK knockdown significantly suppressed the inhibitory effect of metformin on HIF-1α expression in CAFs and on invasion of breast cancer cells (P<0.05). Treatment with TGF-ß1 partially decreased the inhibitory effect of metformin on HIF-1α expression in CAFs and invasiveness of the breast cancer cells (P<0.05). CONCLUSION: Metformin suppresses HIF-1α expression in CAFs to block tumor-stromal cross talk in breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Metformina , Humanos , Feminino , Metformina/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Interleucina-8/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias da Mama/genética , Proteínas Quinases Ativadas por AMP/metabolismo , RNA Interferente Pequeno/metabolismo , Fibroblastos
3.
Ren Fail ; 46(1): 2332492, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584135

RESUMO

Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Rim/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
4.
Clin Exp Pharmacol Physiol ; 51(6): e13855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636942

RESUMO

Cardiac microvascular endothelial cells (CMECs) are important cells surrounding the cardiomyocytes in the heart that maintain microenvironment homeostasis. Salvianic acid A sodium (SAAS) has been reported to prevent myocardial infarction (MI) injury. However, the role of SAAS on CMEC proliferation remains unclear. CEMCs exposed to oxygen glucose deprivation (OGD) were used to explore the angiogenic abilities of SAAS. In vivo, C57BL/6 mice were divided into three groups: sham, MI and SAAS + MI groups. Compared to OGD group, SAAS led to a reduction in the apoptotic rate and an increase of the proliferation in vitro. Additionally, SAAS increased the protein levels of Bcl2, HIF-1α and vascular endothelial growth factor (VEGF) with the reduction of Bax. In terms of the specific mechanisms, SAAS might inhibit HIF-1α ubiquitination and enhance the HIF-1α/VEGF signalling pathway to increase CMEC proliferation. Furthermore, SAAS increased the density of vessels, inhibited myocardial fibrosis and improved cardiac dysfunction in vivo. The present study has revealed that SAAS could potentially be used as an active substance to facilitate CMEC proliferation post-MI.


Assuntos
Lactatos , Infarto do Miocárdio , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Células Endoteliais/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proliferação de Células , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621945

RESUMO

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Assuntos
Nefropatias Diabéticas , Fator A de Crescimento do Endotélio Vascular , Ratos , Masculino , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ultrafiltração , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Fibrose , Hipóxia , Transdução de Sinais , RNA Mensageiro/metabolismo
6.
Sci Rep ; 14(1): 6275, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491188

RESUMO

Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.


Assuntos
Neuroblastoma , Humanos , Hipóxia Celular/genética , Linhagem Celular , Hipóxia/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
J Transl Med ; 22(1): 280, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491511

RESUMO

BACKGROUND: Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS: Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS: Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION: Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Ovarianas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética
8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542330

RESUMO

Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.


Assuntos
60489 , Células Endoteliais , Animais , Camundongos , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542288

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.


Assuntos
Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição , Fatores de Crescimento do Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/patologia
11.
Sci Total Environ ; 924: 171649, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485018

RESUMO

Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.


Assuntos
Apoptose , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/genética , Apoptose/fisiologia , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta ao Choque Térmico/genética , Intestinos/metabolismo , Suínos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição CHOP/metabolismo , Transdução de Sinais
12.
Hum Cell ; 37(3): 768-781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478356

RESUMO

Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Láctico , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Sci Rep ; 14(1): 5845, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462658

RESUMO

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/patologia , Genes myc , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1344074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505753

RESUMO

Introduction: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Insuficiência Cardíaca , Animais , Criança , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Doenças Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Coração , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
15.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474195

RESUMO

Neuroblastoma (NB) is one of the highly vascularized childhood solid tumors, and understanding the molecular mechanisms underlying angiogenesis in NB is crucial for developing effective therapeutic strategies. B-cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression, but its role in angiogenesis remains unexplored. This study investigated BAP31 modulation of pro-angiogenic factors in SH-SY5Y NB cells. Through protein overexpression, knockdown, antibody blocking, and quantification experiments, we demonstrated that overexpression of BAP31 led to increased levels of vascular endothelial growth factor A (VEGFA) and Galectin-3 (GAL-3), which are known to promote angiogenesis. Conditioned medium derived from BAP31-overexpressing neuroblastoma cells stimulated migration and tube formation in endothelial cells, indicating its pro-angiogenic properties. Also, we demonstrated that BAP31 enhances capillary tube formation by regulating hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target, GAL-3. Furthermore, GAL-3 downstream proteins, Jagged 1 and VEGF receptor 2 (VEGFR2), were up-regulated, and blocking GAL-3 partially inhibited the BAP31-induced tube formation. These findings suggest that BAP31 promotes angiogenesis in NB by modulating GAL-3 and VEGF signaling, thereby shaping the tumor microenvironment. This study provides novel insights into the pro-angiogenic role of BAP31 in NB.


Assuntos
Neuroblastoma , Fator A de Crescimento do Endotélio Vascular , Criança , Humanos , 60489 , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Galectina 3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/patologia , Neuroblastoma/metabolismo , Microambiente Tumoral , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534356

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor composed of an alpha and a beta subunit. HIF-1α is a master regulator of cellular response to hypoxia by activating the transcription of genes that facilitate metabolic adaptation to hypoxia. Since chondrocytes in mature articular cartilage reside in a hypoxic environment, HIF-1α plays an important role in chondrogenesis and in the physiological lifecycle of articular cartilage. Accumulating evidence suggests interactions between the HIF pathways and the circadian clock. The circadian clock is an emerging regulator in both developing and mature chondrocytes. However, how circadian rhythm is established during the early steps of cartilage formation and through what signaling pathways it promotes the healthy chondrocyte phenotype is still not entirely known. This narrative review aims to deliver a concise analysis of the existing understanding of the dynamic interplay between HIF-1α and the molecular clock in chondrocytes, in states of both health and disease, while also incorporating creative interpretations. We explore diverse hypotheses regarding the intricate interactions among these pathways and propose relevant therapeutic strategies for cartilage disorders such as osteoarthritis.


Assuntos
Relógios Circadianos , Humanos , Condrogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Condrócitos/metabolismo , Hipóxia/metabolismo
17.
J Transl Med ; 22(1): 248, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454480

RESUMO

BACKGROUND: Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS: The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS: We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION: This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Neuroproteção , Simulação de Acoplamento Molecular , Resposta a Proteínas não Dobradas , Isquemia , Autofagia , Infarto , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
18.
Eur J Obstet Gynecol Reprod Biol ; 296: 185-193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458034

RESUMO

OBJECTIVE: The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN: Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS: In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION: DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/metabolismo , China , Endométrio/metabolismo , Hipóxia/metabolismo , Células Estromais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
19.
Mar Environ Res ; 197: 106467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520956

RESUMO

Marine hypoxia poses a significant challenge in the contemporary marine environment. The horseshoe crab, an ancient benthic marine organism, is confronted with the potential threat of species extinction due to hypoxia, making it an ideal candidate for studying hypoxia tolerance mechanisms. In this experiment, juvenile Tachypleus tridentatus were subjected to a 21-day trial at DO:2 mg/L (hypoxia) and DO:6 mg/L conditions. The experimental timeline included a 14-day exposure phase followed by a 7-day recovery period. Sampling occurred on days 0, 7, 14, and 21, where the period from day 14 to day 21 corresponds to seven days of recuperation. Several enzymatic activities of important proteins throughout this investigation were evaluated, such as succinate dehydrogenase (SDH), phosphofructokinase (PFK), hexokinase (HK), lactate dehydrogenase (LDH), and pyruvate kinase (PK). Concurrently, the relative expression of hexokinase-1 (HK), hypoxia-inducible factor 1-alpha inhibitor (FIH), and hypoxia-inducible factor 1-alpha (HIF-1α), pyruvate dehydrogenase phosphatase (PDH), succinate dehydrogenase assembly factor 4 (SDH), and Glucose-6-phosphatase (G6Pase) were also investigated. These analyses aimed to elucidate alterations in the hypoxia signaling pathway and respiratory energy metabolism. It is revealed that juvenile T. tridentatus initiated the HIF pathway under hypoxic conditions, resulting in an upregulation of HIF-1α and FIH-1 gene expression, which in turn, influenced a shift in metabolic patterns. Particularly, the activity of glycolysis-related enzymes was promoted significantly, including PK, HK, PKF, LDH, and the related HK gene. In contrast, enzymes linked to aerobic respiration, PDH, and SDH, as well as the related PDH and SDH genes, displayed down-regulation, signifying a transition from aerobic to anaerobic metabolism. Additionally, the activity of gluconeogenesis-related enzymes such as PK and G6Pase gene expression were significantly elevated, indicating the activation of gluconeogenesis and glycogenolysis pathways. Consequently, juvenile T. tridentatus demonstrated an adaptive response to hypoxic conditions, marked by changes in respiratory energy metabolism modes and the activation of hypoxia signaling pathways.


Assuntos
Caranguejos Ferradura , Succinato Desidrogenase , Animais , Caranguejos Ferradura/genética , Caranguejos Ferradura/metabolismo , Succinato Desidrogenase/metabolismo , Hexoquinase/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Glucose/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
20.
Crit Care ; 28(1): 100, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539163

RESUMO

Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.


Assuntos
Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...